Normal view MARC view ISBD view

Sulfuric Acid Resistance of Strain Hardening Fibre Reinforced Geopolymer Composite

By: Ohno, Motohiro.
Contributor(s): Victor, C. Li.
Publisher: Thane ACC LTD 2019Edition: Vol.93(12), Dec.Description: 47-53p.Subject(s): Civil EngineeringOnline resources: Click here In: Indian Concrete Journal - ICJSummary: This paper reports on sulfuric acid resistance of a strainhardening fibre-reinforced geopolymer composite, named Engineered Geopolymer Composite (EGC). EGC is a promising material for durable and resilient wastewater infrastructure applications due to its acid-resistant geopolymer matrix and high tensile ductility along with self-controlled microcracking. In the present study, the weight loss, residual compressive and flexural strengths, and deflection capacity of acid-exposed EGC specimens are experimentally investigated. In comparison with normal cement concrete and Engineered Cementitious Composite (ECC), EGC exhibited a three times slower rate of weight loss and no significant degradation in mechanical performances.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Articles Abstract Database Articles Abstract Database School of Engineering & Technology (PG)
Archieval Section
Not for loan 2021-2022291
Total holds: 0

This paper reports on sulfuric acid resistance of a strainhardening fibre-reinforced geopolymer composite, named Engineered Geopolymer Composite (EGC). EGC is a promising material for durable and resilient wastewater infrastructure applications due to its acid-resistant geopolymer matrix and high tensile ductility along with self-controlled microcracking. In the present study, the weight loss, residual compressive and flexural strengths, and deflection capacity of acid-exposed EGC specimens are experimentally investigated. In comparison with normal cement concrete and Engineered Cementitious Composite (ECC), EGC exhibited a three times slower rate of weight loss and no significant degradation in mechanical performances.

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha